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Disclaimer

▪ Assumes that the audience has knowledge at an introductory 
machine learning course level

▪ Machine learning <-> Deep learning <-> Computer vision
(in the context of this presentation) 

▪ The presentation is more of an overview of the field than any sort of 
deep dive
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Explainable AI
The Black Box Problem

(1) Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep 
convolutional neural networks. In Advances in neural information processing systems (pp. 
1097-1105). 
(2) Lillicrap, T. P., & Kording, K. P. (2019). What does it mean to understand a neural network?. arXiv 
preprint arXiv:1907.06374.
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▪ Contains enough operations that you would not be 
able to compute a forward pass in your lifetime

▪ This (outdated) model contains 772 840 neurons; 
how can we make sense of it?

▪ Called a black-box problem because the decision 
appears inscrutable from the outside

▪ Even if we examine the code, trained parameters, 
or elementary operations, it is difficult or 
impossible to express how they combine to form a 
decision



Explainable AI

7
https://www.theverge.com/2018/1/
12/16882408/google-racist-gorilla
s-photo-recognition-algorithm-ai

Ethical & Political Impetus
▪ Challenges in XAI highlight the need for good 

explanations for why and how deep learning 
algorithms make decisions

▪ Why do image classification algorithms make 
racist choices? Under what conditions might 
an autonomous vehicle hit a pedestrian? 
When are we confident enough in an assisted 
medical diagnosis to use it in field?

▪ Data protection laws in Europe give citizens a 
“right to an explanation” when an algorithm 
makes a decision that affects them

▪ France may require the communication of 
model parameters

▪ Google’s solution to the racist classifier was 
not to explain the decision but to remove 
gorillas from the list of possible classes
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A Review of XAI

Gunning, D. (2017). Explainable Artificial Intelligence (XAI)—DARPA. Machine 
Learning, 18. 9

Recent Origins & Progress

▪ XAI goes back before deep learning, but the 
recent surge is traceable to DARPA’s initiative

▪ Gunning’s presentation was published and 
picked up by highly visible popular press stories



A Review of XAI
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An Early Taxonomy

▪ Proxy Models

▪ Introspective Models

▪ Correlative Techniques & 
Saliency Maps

▪ Post Hoc Explanations

▪ Example-Based 
Explanations
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A Review of XAI
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Si, Z., & Zhu, S.-C. (2013). Learning AND-OR 
Templates for Object Recognition and 
Detection. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 35(9), 
2189–2205. 

Proxy Models
▪ Proxy models train an adjacent model with a 

simpler, interpretable architecture to express 
what the more complicated NN is doing

▪ In this case, the proxy model learns a set of 
and / or rules to apply to simple features of 
input images, ultimately resulting in a logic 
tree that expresses how the NN chooses its 
class

Pros:

▪ Proxy models use highly interpretable 
architecture (e.g. decision trees) 

Cons:

▪ Proxy models cannot match the performance 
of the model they are standing in for



A Review of XAI
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Hendricks, L. A., Hu, R., Darrell, T., & Akata, Z. (2018). 
Grounding Visual Explanations. In V. Ferrari, M. 
Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer 
Vision – ECCV 2018 (Vol. 11206, pp. 269–286).

Introspective Models
▪ Introspective models append a secondary 

DNN to the one being explained to learn to 
express its decisions in interpretable output 
(e.g. language)

Pros:

▪ Introspective models present the user with 
compelling explanations that imply causation

▪ No loss in predictive power

Cons:

▪ Replaces one black box with another; who 
explains the explainer?



A Review of XAI
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(1) Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep Inside 
Convolutional Networks: Visualising Image Classification 
Models and Saliency Maps. 
(2) Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & 
Kim, B. (n.d.). Sanity Checks for Saliency Maps. 11.

Correlative Methods & Saliency Maps

▪ These techniques visualize some relationship 
between the input and output without changing 
the model

▪ Often visualize the loss gradient with respect to 
the input

Pros:
▪ Directly describes relationship between input and 

output
▪ Intuitive format
Cons:
▪ Gradients are correlated with optimal loss, but 

they can point to local minima
▪ Point to a manifold of explanations with no 

guidance on narrowing the field
▪ Susceptible to misinterpretation – 

indistinguishable from edge detectors in some 
cases



A Review of XAI
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Ribeiro, M. T., Singh, S., & Guestrin, C. 
(2016). “Why Should I Trust You?”: 
Explaining the Predictions of Any 
Classifier.

Post Hoc Explanations
▪ These include any technique that asks the 

user to rationalize the cause of the 
explanation after having observed it

▪ In LIME, the explanations are local; any pixel 
not weighted heavily in the linear 
approximation around a certain point are 
omitted from the explanation

Pros:

▪ Can be causal, based on iterative perturbation 
or processing bottlenecks (e.g. attention)

Cons:

▪ Susceptible to the confirmation bias in 
interpretation

▪ Susceptible to bias in defining regions of 
interest, hyperparameters of explanation



A Review of XAI

Kim, B. (2016). Examples are not 
enough, learn to criticize! Criticism 
for Interpretability. 
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Example-Based Explanations
▪ These methods offer explanations in the form of 

examples that illustrate when the model 
behaves certain ways

▪ E.g. here is an input case that is highly 
representative of this model’s view of its class / 
here is an input case that is an exception

Pros:

▪ Involves abductive logic; shows when models’ 
failure in addition to success and sketches the 
decision boundary through cases

Cons:

▪ Examples are generated from a massive 
stimulus space, so explanations are generated 
by users ad hoc

▪ No guidance on narrowing down explanations, 
involves many researcher degrees of freedom



A Review of XAI

16

What’s Missing?

The categories reviewed above are 
powerful techniques that offer a lot 
of explanatory power

However, the current state of XAI 
has a collective blind spot:

-> Most explanations are generated post hoc 
rather than a priori
-> Most investigations are confirmatory rather 
than falsifiable
-> Most explanations are automatic, with many 
researcher degrees of freedom

A complementary approach is to 
conduct experiments that test 
hypotheses under falsifying 
conditions with curated controls
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Cognitive Science

slides from Jessica Hamrick, DeepMind 18



Cognitive Science and AI

slides from Jessica Hamrick, DeepMind 19



Artificial Cognition

S. Ritter, D. G. T. Barrett, A. Santoro, and M. M. Botvinick. Cognitive 
Psychology for Deep Neural Networks: A Shape Bias Case Study. page 

10, 2017.
20

A Branch of Machine Behaviour towards XAI
Framework for Study:

▪ Document Variations in 
Behaviour

▪ Infer the Cause by 
Falsifying Alternatives

▪ Identify Boundary 
Conditions

▪ Toy with the Brain
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Artificial Cognition
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Osband, I., Doron, Y., Hessel, M., Aslanides, J., 
Sezener, E., Saraiva, A., McKinney, K., 
Lattimore, T., Szepezvari, C., Singh, S., Van 
Roy, B., Sutton, R., Silver, D., & Van Hasselt, H. 
(2019). Behaviour Suite for Reinforcement 
Learning.

1. Document Variations in Behaviour

▪ To develop testable hypotheses, we don’t 
want to take shots in the dark

▪ Start from documented variations; 
correlate behaviours with tasks

▪ Osband et al (2019) created a set of 7 RL 
benchmarking tasks that explicitly load 
onto different behaviours and tested them 
on 3 different agents with different 
architectures

▪ This allowed them to test specific 
hypotheses about how different 
architectures would perform on different 
tasks (e.g. DQN better explorations vs A2C 
RNN better memory) 



Artificial Cognition
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Ritter, S., Barrett, D. G. T., Santoro, A., & 
Botvinick, M. M. (2017). Cognitive 
Psychology fo Deep Neural Networks: A 
Shape Bias Case Study. 10.

2. Infer the Cause

▪ Wanted to know whether ANNs exhibit shape 
bias, which is the human tendency to 
over-index on shape versus colour when 
learning new objects

▪ Used a test set from human development 
psychology used to assess which pairs 
learners find more similar (control for 
background etc)

▪ Used a nearest-neighbour algorithm to 
measure the network’s preference for shape 
or colour

▪ Strong preference for shape-matching probes 
over colour-matching controls



Artificial Cognition
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Kim, B., Reif, E., Wattenberg, M., & 
Bengio, S. (2019). Do Neural 
Networks Show Gestalt 
Phenomena? An Exploration of the 
Law of Closure. 

2. Infer the Cause

▪ Wanted to know whether ANNs exhibit Gestalt 
closure, which is a behaviour in biological NNs 
to view incomplete shapes as whole

▪ Developed a closure metric, which compares 
the cosine similarity of internal layers’ output 
between full triangles and illusory or 
non-illusory (rotated vertices) triangles

▪ Tested 7 different hypotheses 

▪ Here, they fail to reject the hypothesis that 
later layers exhibit stronger closure than 
earlier layers

▪ Used shuffled pixels and three other controls
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Bojarski, M., Yeres, P., Choromanska, A., 
Choromanski, K., Firner, B., Jackel, L., & Muller, 
U. (2017). Explaining How a Deep Neural 
Network Trained with End-to-End Learning 
Steers a Car. 

2. Infer the Cause

▪ Developed a saliency algorithm to highlight 
the visual input to their steering algorithm 
that ought to correspond to steering output

▪ Recognizing that there is correlation with 
ground contours, the authors wanted to test 
whether the highlighted portions affect the 
steering angle

▪ Created a set of input stimuli with displaced 
pixels (salient/background/entire image) to 
rule out alternatives

▪ Show that displacing the critical pixels is 
equivalent to displacing the entire image, but 
only in the presence of a background



Artificial Cognition
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RichardWebster, B., Kwon, S. Y., Clarizio, C., 
Anthony, S. E., & Scheirer, W. J. (2018). Visual 
Psychophysics for Making Face Recognition 
Algorithms More Explainable. In V. Ferrari, M. 
Hebert, C. Sminchisescu, & Y. Weiss (Eds.), 
Computer Vision – ECCV 2018 (Vol. 11219, pp. 
263–281).

3. Identify Boundary Conditions
▪ If your theory can explain when a behaviour 

happens, it should also account for when it 
stops; important to narrow the range of viable 
alternative explanations

▪ RichardWebster et al. (2018) applied a set of 
perturbations across a range of intensities to 
5 different face recognition models (including 
expression)

▪ One of the neat findings from this explorative 
study was that FaceNet and OpenFace, which 
are variants of the same architecture, 
performed very differently

▪ “FaceNet uses a subset of MS-Celeb-1M where 
difficult images that contain partial occlusion, 
silhouettes, etc. have been removed as a function of 
facial land- mark detection. This is likely the weakest 
link, as the network does not have an opportunity to 
learn invariance to these conditions.”
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Leibo, J. Z., d’Autume, C. de M., Zoran, D., Amos, D., 
Beattie, C., Anderson, K., Castañeda, A. G., Sanchez, 
M., Green, S., Gruslys, A., Legg, S., Hassabis, D., & 
Botvinick, M. M. (2018). Psychlab: A Psychology 
Laboratory for Deep Reinforcement Learning 
Agents. 

4. Toy with the Brain

▪ Normally not possible with humans, ML 
researchers can learn from experimentation by 
altering the “brain”

▪ Leibo et al. (2018) put UNREAL RL agent in a virtual 
environment populated by experimental stimuli 
from visual psychophysics

▪ Showed exemplary performance on most things 
except visual acuity (clarity of detail) and contrast 

▪ They then predicted that UNREAL would have a 
had time learning small relative to large items, and 
would be disproportionately distracted by large 
items

▪ Corrected this flaw after designing a new input 
filter inspired by the human fovea
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Response Time Methods for XAI
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How would you explain AI if you couldn’t look inside the black box?

▪ Dominant XAI techniques require some way to 
query the model’s architecture, parameters, 
gradient, etc.

▪ For many important XAI cases, researchers will not 
have privileged access to the model in question

▪ We want a proof of concept for an explanation 
derived strictly from a priori hypotheses about the 
output given the input; no peeking inside!

▪ The challenge is that the output (label, accuracy) 
does not have an obvious relationship to the 
internal processes



RT Methods for XAI
Explaining Human Vision

▪ Psychologists also have a black-box problem 
in explainability

▪ Before modern neuroimaging, psychologists 
were unable to look inside their black box

▪ RT methods were invented in 1868 to 
identify different stages of perceptual 
processing

▪ By carefully manipulating the input or task, 
experimenters could attribute differences in 
RT to otherwise hidden processes

▪ To use RT methods, we require a distribution 
of RTs and a meaningful connection between 
processing time and performance

Donders, F. C. (tr. 1969; or. 1868). On 
the speed of mental processes. Acta 
psychologica, 30, 412-431.
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RT Methods for XAI
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Dynamic Inference
▪ One solution is dynamic inference 

models, which permit early-exits based 
on the confidence of intermediate 
classifiers

▪ These models are gaining popularity as 
the demand grows for devices with:
▪ Limited computational capacity
▪ Time-constrained decision-making

▪ This produces two conditions required for 
RT methods:
▪ Variability in RT
▪ Meaningful connection between RT 

and performance
Time

jaguar
leopard



RT Methods for XAI

▪ If hierarchical feature space is correlated with 
model depth, and conditional computation allows 
early exits, then we can make predictions about 
feature space and RT

▪ Not a perfect correlation because the architecture 
does permit sharing features between layers

Huang, G., Chen, D., Li, T., Wu, F., Van Der Maaten, L., & 
Weinberger, K. Q. (2017). Multi-scale dense convolutional 
networks for efficient prediction. arXiv preprint 
arXiv:1703.09844, 2.
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Dynamic Inference

▪ Specifically, decisions that depend on higher-order 
feature space should take longer

▪ RT is handy because it is completely “outside” the 
black box



RT Methods for XAI

Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., ... & Katz, B. (2019). 
ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object 
recognition models. In Advances in Neural Information Processing Systems (pp. 
9448-9458).
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Experiment 1 - Method

▪ ImageNet overrepresents 
canonical image features

▪ ObjectNet deliberately includes 
complex and unusual features

▪ A 50 000 – image test set for object 
recognition algorithms that 
contains non-canonical 
viewpoints, backgrounds, and full 
rotation



RT Methods for XAI
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Experiment 1 - Results



RT Methods for XAI

▪ SCEGRAM database is a 62-image 
test set designed for experiments 
with humans

▪ Carefully controls saliency, 
position, and size of the critical 
object while varying the scene’s 
semantics or syntax

34
Öhlschläger, S., & Võ, M. L. H. (2017). SCEGRAM: An 
image database for semantic and syntactic 
inconsistencies in scenes. Behavior research 
methods, 49(5), 1780-1791.

Experiment 2 - Method
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RT Methods for XAI
SCEGRAM - Consistent
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RT Methods for XAI
SCEGRAM – Semantic Inconsistency
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RT Methods for XAI
SCEGRAM – Syntactic Inconsistency
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RT Methods for XAI
SCEGRAM – Semantic & Syntactic Inconsistency



RT Methods for XAI

▪ Scene grammar is a human 
phenomenon whereby the visual 
system is very sensitive to 
high-level semantic and syntactic 
relationships between objects and 
the scene they appear in

▪ We have an easier time processing 
scenes with consistent grammar

▪ Attention is attracted to violations 
and spends more time processing 
them

39
Öhlschläger, S., & Võ, M. L. H. (2017). SCEGRAM: An image database for semantic and 
syntactic inconsistencies in scenes. Behavior research methods, 49(5), 1780-1791.

Experiment 2 - Background



RT Methods for XAI
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Experiment 2 - Results



RT Methods for XAI
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Experiment 2 - Results

▪ Object-Absent images are, by definition, 
semantically consistent – they match CON

▪ As predicted, the lack of object-scene violations 
is reflected in homogenous RT 



Conclusions

▪ Response time analyses can be used to make inferences about CNN 
feature processing in dynamic inference models from completely 
“outside” the black box

▪ These techniques lend themselves to a priori hypothesis testing 
about the relationship between the input space and model behaviour

▪ These analyses could be used to form expectations for when and how 
models should perform in situations where explanations are desirable, 
but privileged access to a model is denied. 



Resources

▪ AI + Cognitive Science: https://cbmm.mit.edu/learning-hub 

▪ Interpretability:

▪ Book
https://christophm.github.io/interpretable-ml-book/

▪ Blog posts, visualizations and code
https://distill.pub/

▪  

https://cbmm.mit.edu/learning-hub
https://distill.pub/
https://distill.pub/

