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Primitives for building abstract features
Relation Types (R): progression, xor, or, AND, Consistent Union

Object (O) | Attributes (A) Possible values (v)
Shape Size 10 scaling factors evenly spaced in [0, 1]
Color 10 evenly spaced grayscale intensities in [0, 1]
Number 0,1,2,3,4,56,7,8,9
Position ((x, y) coordinates in a (0, 1) plot)
Type circle, triangle, square, pentagon, hexagon, octagon, star
Line Type diagonal down, diagonal up, vertical, horizontal, diamond, circle
Color 10 evenly spaced grayscale intensities in [0, 1]

Generation process:

(1) Sampling 1- 4 triples (r, o0, a)

(2) Sampling values v € V for each a € Sa, adhering to the associated relation r
(3) Sampling values v € V for each a ¢ Sa, ensuring no spurious relation is induced
(4) Rendering the symbolic form into pixels
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Relation types

Unary (progression on shape number)
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A
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Binary (XOR on line type)

O

Ternary (consistent union on shape type)

o
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Categorisation of relation types:

UNARY (only consider one panel for context)

e.g. PROGRESSION (P) on the NUMBER (A) of SHAPE (O)

BINARY (two panels are considered in conjunction to produce third)

e.g. XOR (R) on the TYPE (A) of LINE (O)

TERNARY (all three panels adhere to some rule - regardless of
order)

e.g. CONSISTENT UNION (R) on TYPE (A) of SHAPE (O) i.e. all
shapes from common set {circle, hexagon, square} in the example
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A hard(er) RPM

Possible relations:

1. OR(R)on POSITION (A) of SHAPES (O) in a row

2. OR(R)onTYPE (A) of LINE (O) in a column

R
S
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RPM Generalisation regimes

e Neutral

Interpolation
e Extrapolation

Held-out attribute (shape-color)
e Held-out attribute (line-type)

Held-out triple {r,0,a}
e Held-out Pairs of Triples

e Held-out Attribute Pairs
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Neutral

All {r,0,a} triplets that are seen in training are seen in test
-> Difference is just in the pixel-level manifestation of the matrix
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Interpolation/Extrapolation

For ordered attributes:

e colour takes 10 evenly spaced grayscale values between [0,1]
e size takes 10 evenly spaced scaling factors between [0,1]
e number takes values 0,1,2,3,4,5,6,7,8,9

Interpolation Extrapolation
train numbers 0,2,4,6,8 train numbers 0,1,2,3,4
test numbers 1,3,5,7,9 test numbers 5,6,7,8,9

(similarly for other attributes) | (similarly for other attributes)
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Held-out attribute

Training set S does not contain any triplet with

e 0 = shape, a = colour (shape-colour)
e 0 =line, a = type (line-type)

At least one triplet with these held-out attributes is present in test
set
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Held-out triples/ pair of triples

29 unique triples {r,0,a} in dataset:

e / triples in test set (such that each ‘a’ occurs only once, every
PGM in the test set has at least one of these triples)

400 viable pairs of triples ({r,,0,,a.}.{r,,0,,a,}) = (t,.,1,)
e 360 train, 40 test

e Any of the 40 (t,,t,) do not occur together in train PGM, test
PGM has at Ieast one pair out of 40
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Held-out pair of attributes

20 (unordered) unique attribute pairs (a,,a,) in dataset:

e Such that ({r,,0,,a,}.{r,,0,,a,}) is a viable triplet pair
e 16 train, 4 test
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RAVEN

Figure 1. (a) An example RPM. One is asked to select an image

Inside Outsid ] }
(a) (b) nssltr?lctltrsel ¢ that best completes the problem matrix, following the structural
& Inside and analogical relations. Each image has an underlying structure.
44 ngggﬁggt Component  (b) Specifically in this problem, it is an inside-outside structure
2%2 Gri in which the outside component is a [ayout with a single centered
pas Center x2Grid X e . h i
= Layout object and the inside component is a 2 x 2 grid layout. Details in
g Figure 2. (c¢) lists the rules for (a). The compositional nature of the
= rules makes this problem a difficult one. The correct answer is 7.
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=)
o RAVEN PGM
o
’? . i More structure + structured | Less structure
H (c) Outside annotations
[Number :Constant]
[Position:Constant] (generated using Attributed
[Type:Distribute Three] Stochastic Image Grammar)
g og [Size:Constant]
$ [Color:Constant]
= Inside More rules per RPM Less rules
= 1 2 3 4 [Number:Constant]
2 [Position:Distribute Three] _ ] _ ]
< @ [Type:Distribute Three] 7 figure configs 3 fig configs
[Size:Constant]
5 6 7 8 [Colox:Progression) Fewer* samples (*70k) 1.2M train set
Zhang, C., Gao, F, Jia, B, Zhu, Y., & Zhu, S. C. (2019). Raven:
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RAVEN

(a) Rules (b)

Outside
[Number:Constant] =T
[Position:Constant] Inside Outside
[Type:Progression] Structure

[Size:Distribute Three]

[Color:Constant]
Inside

[Number:Constant]
[Position:Constant]

[Type:Constant] Component
[Size:Distribute Threel
[Color:Distribute Threel ‘
© : Layout
Layout Attributes
[Number, ‘
Position,
—— Entity

: [Type, Color, Size :- (d)ﬁ@@ (e)Cg?j / g)j/ (= / [ -7 /
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Generalisation regimes
N 4 v Qe
Yoo 1222 reee 1 2 (OO E®
e O °°° ocre LAY -
.2x.2Grid. 3X§G§ig . Left-Right gp—Dow? OuczgnCenter nGjQ

Regime Measure

Train: C “‘compositional reasoning ability of the model as it requires the model to
ra"_" ente_r generalize the rules learned in a single-component configuration to
Test: Left-Right, Up-Down, and Out-InCenter configurations with multiple independent but similar components”

Train: Left-Riaht “...one could be regarded as a transpose of another. Thus, the test could
rain. Leit-Rig : measure whether the model simply memorizes the pattern in one
Test: Up-Down (and vice versa) configuration.”

Train: 2x2 Grid “Both configurations involve multi-object interactions. Therefore, the test
rain: = N - could measure the generalization when the number of objects changes”
Test: 3x3 Grid (and vice versa)
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Solution approaches




Wild Relation Network

Choice Panel B

'softmax—b Answer: A

P > @®:-» sigmoid - » meta-target
— c———p == prediction

] Panel

0 —  CNN Embedding

| [ Panel Embeddings Pairs

RN

f,g are MLPs (constitute the relation network) - look at pairs of panel embeddings to
extract relations - and then combine them across all pairs
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Results (PGM)

p=0 B=10

Model Test (%) Regime Val. (%) Test(%) Diff. | Val. (%) Test(%) Diff.
WReN 62.6 Neutral 63.0 62.6 -0.6 il2 76.9 -0.3
Wild-ResNet 48.0 Interpolation 79.0 64.4 -14.6 92.3 67.4 -24.9
ResNet-50 42.0 H.O. Attribute Pairs 46.7 212 -19.5 73.4 3.3 -21.7
LSTM 35.8 H.O. Triple Pairs 63.9 419 -22.0 74.5 6.3 -18.2
CNN + MLP 33.0 H.O. Triples 63.4 19.0 -44 4 80.0 20.1 -59.9
Blind ResNet 22.4 H.O. line-type 59.5 14.4 -45.1 78.1 16.4 -61.7
H.O. shape-colour 59.1 123 -46.6 85.2 130 -72.2
Extrapolation 69.3 17.2 -52.1 916 15.5 -78.1

Almost no better than random (12.5%) !!
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Other observations (PGM)

e “worse generalisation in the case of Held-out Triples suggests that the
model was less able to induce the meaning of unfamiliar triples from its
knowledge of their constituent components”

e More relations in PGM - poorer performance

e “the pressure to represent abstract semantic principles such that they can
be decoded simply into discrete symbolic explanations seems to improve
the ability of the model to productively compose its knowledge”

e ... . forthe relation property, the difference between a correct and incorrect
meta-target prediction was substantial (86.8% vs. 32.1%). This result
suggests that predicting the relation property correctly is most critical
to task success” (for WReNs)

NIVERSITY
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Dynamic Residual Tree

(u) A)B)C)D)/! /}E)F’/)/’ /,/

(b)
—i 2 : >0—e
< B A
F E

Figure 5. An example computation graph of DRT. (a) Given the
serialized n-ary tree representation (pre-order traversal with / de-
noting end-of-branch), (b) a tree-structured computation graph is
dynamically built. The input features are wired from bottom-up
following the tree structure. The final output is the sum with the
input, forming a residual module.
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Using the pre-order traversal of the A-SIG, a tree
structure is built (each node represents Layout,
Component, Structure, Scene etc)

Each node is a fully connected layer (instead of
LSTM cell in Tree-LSTM) updated as :

t=rao (5 ([£ ] )

w are word vector representations of the node
label, Ic are input features from child node

The bottom level input | is just features from a
CNN
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DRT results (RAVEN)

Method Acc Center 2x2Grid 3x3Grid L-R U-D 0O-IC 0-1IG

LSTM 13.07% 13.19% 14.13% 13.69% 1284% 12.35% 12.15% 12.99%
WReN 14.69% 13.09% 28.62% 28.27% 7.49% 6.34% 8.38% 10.56%
CNN 36.97%  33.58% 30.30% 33.53% 3043% 41.269% 43.20%  37.54%
ResNet 5343% 52.82% 41.86% 44.29% 58.77% 60.16% 63.19% 53.12%
LSTM+DRT 13.96% 14.29% 15.08% 14.09% 13.79% 13.24% 13.99% 13.29%
WReN+DRT 15.02% 15.38% 23.26% 29.51% 6.99% 8.43% 8.93% 12.35%
CNN+DRT 3942%  37.30% 30.06% 34.57% 45.49% 45.54% 4593% 37.54%
ResNet+DRT 59.56%  58.08 % 46.53% 50.40% 65.82% 67.11% 69.09% 60.11%
Human 84.41%  95.45% 81.82% 79.55% 86.36% 81.81% 86.36% 81.81%
Solver* 100% 100% 100% 100% 100% 100% 100% 100%
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Generalisation Results (RAVEN)

Table 3. Generalization test. The model is trained on Center and
tested on three other configurations.

Center Left-Right Up-Down Out-InCenter
51.87% 40.03% 35.46% 38.84%

Table 4. Generalization test. The row shows configurations the

model 1s trained on and the column the model is tested on.
Left-Right Up-Down

Left-Right 41.07% 38.10%
Up-Down 39.48% 43.60%

Table 5. Generalization test. The row shows configurations the

model is trained on and the column the model is tested on.
2x26rid 3Ax3Grid

2x26Grid 40.93% 38.69%
3x3Grid 39.14% 43.72%
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Other observations (RAVEN)

e “WReN achieves higher accuracy on configurations consisting of multiple
randomly distributed objects (2x2Grid and 3x3Grid), with drastically
degrading performance in configurations consisting of independent
image components. This suggests WReN is biased to grid-like
configurations (majority of PGM) but not others that require compositional
reasoning (as in RAVEN)”

e Both ResNet+DRT and WReN+DRT suffer performance loss on meta-target
prediction and structured annotation prediction (exactly opposite to PGM
observations!)

NIVERSITY
U GUELPH 23

7\ VECTOR
INSTITUTE




Multiplex Multilayer Graph Net (MXGNet)

_ContextPanets MultiLayer Graphs
; o
‘ ‘ . ‘ E Fp 4. EY
0 6] —
0 0
‘ . ‘ ‘ E Fp + Ey
%] 0 0 —
6 8]
| o ® o0 ¢ 7 i Fy+E, $=—J Prediction
E ' i e
' . ‘ : 1 8 1.,.8 .
________________________________________ 1.8
Answer Panels T
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® o | 00 ® ) [ AN
(a)
o

UNIVERSITY Wang, Duo, Mateja Jamnik, and Pietro Lio. "Abstract

diagrammatic reasoning with multiplex graph networks."
JGIM ICLR 2020.
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Fp, object-representation module:

CNN: each location is treated as
object feature vector in grid features

Spatial attention: Attend location of
object -> extract using CNN;
for each location z___ indicates
] pres
whether object present
E_y, Edge embeddings module

G_phi, Graph summarization
module

R_theta, Reasoning network
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MXGNet: (shoddy) explanation

aggregated

™ 1103 edges ' Multiplex edge embeddings:
R N% Fg returns object representations v,
—> G I C [1,N] #frames (use onIy row/col5
’é j C [1,L] #objects (nodes in a layer)
| : - g
Diagram 1 i  Diagram2 Diagram 3 _ aggregated e:i‘j)_“_k) (1"‘(1 sULE))

2 to 3 edages

. P = Projection layer projecting
Graph summarization: concatentated node embeddings to T

_ different embeddings
Concat the max(), min(), sum(), mean() of all

edges from nodes in a particular layer to nodes E = MLP processing t" projections to tt"
in last layer (since relations are of the form: layer of edge embeddings

Diagram 3 = F(Diagram 1, Diagram 2))

NIVERSITY
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MXGNet: (shoddy) explanation

F 1 o Cross-multiplexing gating:
N Node b? ' Takes aggregated node info from
— = each layer -> outputs gating

variable for each node in layer
- % g (implemented as multi-head MLP)
Diagram 1 ; Diagram 2 ; Diagram 3 _ aggregated

i ' 2403 8daes Finally, take node embeddings,
multiply with gating function, pass
through MLP = node embeddings

Reasoning network: Takes relational embeddings
and ranks all candidate answers using ResNet +

softmax Take all node embeddings,

concatenate, pass through
ResBlock = Relation feature
embedding for subset (e.g. row
1/2/3)

UNIVERSITY
UELPH

7\ VECTOR
INSTITUTE




MXGNet: results

Model WReN VAE-WReN ARNe MXGNet
Barrett et al. | Steenbrugge et al. | Anonymous (2020) | CNN Sp-Attn
(2018) (2018)
acc. 76.9 N/A 88.2 89.6 88.8
(%) =10
acc. 62.6 64.2 N/A 66.7 66.1
(%) =0
(a) PGM
Model WReN ResNet ResNet+DRT ARNe MXGNet
Zhang et al. (2019) | Zhangetal. (2019) | Zhangetal. (2019) | Anonymous (2020) | CNN  Sp-Attn
acc. (%) 14.69 53.43 59.56 19.67 8391 82.61
(b) RAVEN
-\7\ ?{\lEscTTl?uRTE UIEI_‘}V]ES:II}%I—?Y 27




MXGNet: results

. 5=0 F=10
Model Regime | v (%) test% Diff. | Val.(%) test% Diff.
Neutal B0 626 04 772 769 03

WReN Interpolation 79.0 64.4 -14.6 92.5 674 -24.9
Extrapolation 69.35 172 -32.1 93.6 155 <791

Neutral 67.1 66.7 -0.4 89.9 89.6 -0.3
MXGNet | Interpolation 74.2 65.4 -8.8 91.5 84.6 -6.9
Extrapolation 69.1 189 -50.2 94.3 184 -75.9

NIVERSITY
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Evaluation flaw in RAVEN

%
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Fig. 2. Two example answer sets from problems in RAVEN. We can derive the cor-
rect answer (emboldened) from each set by finding the intersection of the set’s modes
of shape, colour, and scale factors. Essentially, “which frame has the most common
features?”

UNIVERSITY Steven Spratley, Krista Ehinger, and Tim Miller. A Closer 29

UELPH Look at Generalisation in RAVEN. ECCV 2020
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Evaluation flaw in RAVEN

Table 1. Accuracy (%) of ResNet and Rel-Base, trained context-blind on RAVEN.

Acc Centre 2x2 3x3 LR U-D O-IC O-IG

ResNet 83.11 84.23 65.34 68.70 95.14 95.82 92.02 8&80.53
Rel-Base 92.46 98.49 78.66 80.52 99.22 99.66 98.63 92.04

UNIVERSITY Steven Spratley, Krista Ehinger, and Tim Miller. A Closer 30

UELPH Look at Generalisation in RAVEN. ECCV 2020
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Role of symbolic knowledge & relational
bias
Previous methods relied (heavily) on using meta targets as well as strong inductive biases for learning relations.

Are they necessarily needed?

Can we distengale the underlying objects (factors) and simply pass to neural network?

UNIVERSITY
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In PGMs

Xander Steenbrugge, Sam Leroux, Tim Verbelen, and Bart Dhoedt. Improving generalization for abstract reasoning tasks
using disentangled feature representations. Neural Information Processing Systems (NeurlPS) Workshop on Relational
Representation Learning, 2018

Replaces CNN with VAE in the original WReN approach:

Model-type CNN-WReN [1] VAE-WReN (5=4.00)
Generalization regime  Val (%) Test (%) Test (kappa) Val (%) Test (%) Test (kappa)
Neutral 63.0 62.6 0.573 64.8 64.2 0.591
H.O. Triple Pairs 63.9 41.9 0.336 64.6 43.6 0.355
H.O. Attribute Pairs 46.7 27.2 0.168 70.1 36.8 0.278
H.O. Triples 63.4 19.0 0.074 59.5 24.6 0.138

Showed some-level of object disentanglement in PGM scenes

NIVERSITY
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Question:
NIPS ProceedingsP

Extensive study of different VAE models
with Relation network for visual
reasoning tasks (not PGMs, another
task where underlying factors were
controlled). Conclusions:
Are Disentangled Representations Helpful for Abstract Visual Reasoning?

1. “these results provide concrete
Part of: Advances in Neural Information Processing_Systems 32 (NIPS 2019) motivation why one might want to
pursue disentanglement as a property
of learned representations in the
unsupervised case.”

[PDF] [BibTeX] [Supplemental] [Reviews] [Author Feedback] [Meta Review] [Sourcecode]

Authors
« Sjoerd van Steenkiste 2. “.. observed differences between
« Francesco Locatello disentanglement metrics, which should
« Jiirgen Schmidhuber motivate further work in understanding

+ ‘Olhder Bachéin what different properties they capture.”
3. “....useful to extend the methodology
in this study to other complex
down-stream tasks, or include an
investigation of other purported benefits

A n Swe r : Yes of disentangled representations”

TVERSITY
CGUELH 33

7\ VECTOR
INSTITUTE



Object/Frame Relational ResNet

Input frames
8 context, 8 choices

Stage:
5 Jo

§ S5
Input size: ; (b, 16, z5)

|
. C f f

Candidate sequences

A 7

R

of®

®

~

Encoder e,

FC layers  Softmax

Jis

1€

(5.8, 9, 25)

(68,9, z5)

'
'
'
> '
> H
'
'
/

(b*8, zseq) (b, 8)

ResNet baseline: Stack frames into independent sequences (one frame per candidate),
pass through 4-layer ResNet and then rank using FC layers and softmax.
(*Different from original paper approach as all candidate frames were processed at once)

Frame-relational ResNet (Rel-Base): Two stage-

e Take all frames and embed them individually (using ResNet)

e Take frame embeddings, stack into candidate sequences (as above), and pass through
1D convolution. This enables to learn low-level perceptual processes unaffected by
position of frames, and high level that models relations in & between embeddings.

UNIVERSITY
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Look at Generalisation in RAVEN. ECCV 2020

34



Rel-AlIR: explanation

' *16%N - 5.
Input size: | (b*16 1, h, w) (6*16, N, h, w) (BF16¥N, zop;)

Srage:? Input frames AIR Object slots Encoder,p;  Bilinear Encodery;

[ : , .l LN > > (b,16,25)

(b*16*N, 1, h, w)

>\ [s0, X0, Yol [s1, X1, v1l,

* ~
(b*16, N, 3) (b*16*N. 3) (b*16, N, z)

Scene decomposition: Uses attend-infer-repeat (a sort of iterative VAE which splits up
the scene into object latents) to get object slots, scales and positions

Object embedding: Encode objects through CNN

Latent-informed object embedding: Combine object embedding with scale, position
and pass the paired data through a bilinear layer to unify

Object-relational feature extraction:Reshape the object-embedding into N object
channels, pass through 1D residual encoder to generate frame embeddings

Finally, these object-relational feature embeddings are stacked into sequences, encoded
and scored using fully-connected layers (same as Rel-Base)

'\7‘
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PGM set Wild-ResNet [20] WReN CoPINet [29] LEN LEN* LEN** Rel-Base

Neutral 48.00 62.60 56.37 68.10 70.30 85.10 85.50
Extrapolation N/A 17.20 N/A N/A N/A N/A 22.05

z

W OWARLE
co—-( \.><dob> (1) ®
lOl \\‘/ YR

Fig. 6. AIR decomposes PGM frames (left) into grid and background slots (centre,
right). Red bounding boxes denote attention windows for the first slot.

UNIVERSITY
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Rel-Base and Rel-AlR: results

Method Acc Centre 2x2 3x3 L-R U-D O-IC O-IG
WReN [29] 179 154 29.8 329 11.1 11.0 11.1 145
ResNet 345 41.7 341 3885 334 3.7 346 273

LEN[30] 729 802 575 621 73.5 812 844 715
LEN+T [30] 783 823 585 64.3 87.0 855 889 81.9
Human [28] 844 955 818 79.6 864 81.8 864 81.8
Rel-Base  91.7 97.6 859 869 935 965 97.6 83.8
Rel-AIR 94.1 99.0 92.4 87.1 98.7 97.9 98.0 85.3

Table 4. Generalisation test between Left-Right and Up-Down configurations. Rows
and columns indicate training and test sets respectively.

o . Left-Right Up-Down
A) of tralnlng set ResNet RGI—B&SC Rel-AIR ResNet Rel-Base Rel-AIR | ResNet Rel-Base Rel-AIR
Left-Right 27.83 90.09 98.07 3.71 32:71 66.77
10 14.79 24.40 51.39 Up-Down 298 2261  60.81 | 2642 9023  94.84
25 21.48 52.24 81.07
Table 5. Generalisation test between 2x2Grid and 3x3Grid configurations. Rows and
100 3451 91 66 94.10 columns indicate training and test sets respectively.
2x2Grid 3x3Grid
Avallablllty of ObJeCt lists reduces prOblem ResNet Rel-Base Rel-AIR | ResNet Rel-Base Rel-AIR
complexity greatly 2x26rid 2632 60.16  88.24 | 13.96 4155  67.01
3x3Grid 14.36 34.03 61.90 33.84 68.16 82.54

NIVERSITY
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Open questions




Open questions: compositional generalization

If a model has seen certain relation in {0,,a,} and never seen it in
{0,,a,} how well is it able to generalise (i. e Compose the relation for
unseen attribute of the same object)

e Similarly hold attribute constant and vary object
e Finally vary both

This can be seen as a better measure of understanding a relation
across visual concepts. This can also evaluate ‘object-centric ness’ of
object centric representations

e How does this relate to type of relation (unary/binary/ternary)?

NIVERSITY
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Open questions: role of inductive
biases

Two different directions of inductive biases:

e Object-centric representations (VAE, Rel-AlIR)
e Relation learning (WReN, MXGNet)

How does generalization differ across both?

e Do better object-centric representations lead to better generalization

across object/attribute types?
e Does strong relation leaning bias reduce possibility of generalizing

across unseen relation types?

UNIVERSITY
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Open questions: can we adopt methods from VQA?

Can possibly use something similar for abstract

reasoning:
o oo | o

@ &
L2 = ‘ ,
:‘,“-'.':'.-‘:':.;3:':'.4':':“::::‘5.7:":':'23.4'5:“:“::2.?&:'.1":':‘:‘:3":':'5’: | mag e CO ntext
: (9]

@ . “. ?
e o ‘Question’
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Open (closed?) questions: modular networks

Modular networks are used in CLEVR (VQA task with compositional requirements) and
other tasks:

e Hu, Ronghang, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Kate Saenko. "Learning to reason:
End-to-end module networks for visual question answering.”" CVPR 2017

e Drew A Hudson and Christopher D Manning. “Compositional attention networks for machine reasoning”.
ICLR, 2018

e Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths “Automatically composing
representation transformations as a means for generalization” ICLR 2019

Also being used* for abstract visual reasoning (NeurlPS 2020 submissions on arxiv)

e Yuhuai Wu, Honghua Dong, Roger Grosse, Jimmy Ba. “The Scattering Compositional Learner:
Discovering Objects, Attributes, Relationships in Analogical Reasoning”, arxiv 2020
e Xiangru Tang, Haoyuan Wang, Xiang Pan, Jiyang Qi, “Multi-Granularity Modularized Network for Abstract

Visual Reasoning”, arxiv 2020

Does that mean we can use other ideas from VQA? * vet to review
V INSTITUTE Urgvg}}gg Y 42




Open questions: Program synthesis approach

Program SyntheSiS approaCheS have been used in Questiop:Aretheremorecubesthanyellowthings? Answer: Yes
CLEVR. Seeing how PGM and RAVEN are both things | LSTM |- LSTM |-» =322 [Classifer |
procedurally generated problems, program yetow— L;M] e Ls*m]_» o gx;?:;ion
induction/synthesis seems like an obvious approach to than1H LsiM] & Ls’m}_, | | Do
4 [yellow]
try cubes——-'[ LSTM] —’[ LSTM }—-’ <SCENE> | el Foeest )
Neural mmeﬁ: LSIM: _'i e i o] | e
there —+#| LSTM | [~*| LSTM || shape i
e Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman, J., a4 L;M] & Y . o)
Fei-Fei, L., Lawrence Zitnick, C. and Girshick, R., “Inferring and | Predicted -
executing programs for visual reasoning”. CVPR 2017. Program Generator | program

Neural+Symbolic

e “The Neuro-Symbolic Concept Learner:
Interpreting Scenes, Words, and

' Visual Representation Concept Embeddings
E')v L Obj 1

i Vo)
w—: Obj 2

Symbolic Reasoning

0 4 Answer: Cylind . .
"""""" e : ofuts: Bk Sentences From Natural Supervision”
: Semantic Parsing (Candidate Interpretations) .
Qi What is the shape Of JQucry(Shapc Filter(Red, Relate(Left, Filter(Sphere)))) 5 Jlayuan MaO, Chuang Gan, PUShmeet
the red object left of the §‘E*’;';"{ﬂ‘,igfmg'S‘f];‘fg";ﬁ[fe,'f;‘j;“‘k‘jf,;ﬁg{‘*F‘ﬁf‘e’r’();phm,m “R?NFORCE Kohli, Joshua B. Tenenbaum, and Jiajun
sphere? Wu. ICLR 2019
VECTOR
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Open questions: Scaling to reasoning on real images

Type of A Increasing
stimuli real-world
V-PROM applicability
Real (this work) (Unsolved tasks)
m Synthetic, CLEVR,  CLEVR-Humans
O photo-realistic Johnson et al.
=
© NLVR
2' Suhr et al.
<
- Synthetic, 2D PGMs Shapes
< Barrett et al. Andreas et al.
S » Skills
Reasoning Reasoning Reasoning required
(logical, relational, + Language + Language
set-theoretic, etc.) + General knowledge
VQA approaches can be especially helpful for
real-world analogical reasoning problems.......
O
fhar}
©
i)
o
=
I
o
—
o
=
(%2}
(=
<
VECTOR Teney, Damien, et al. "V-PROM: A Benchmark for
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Thanks

Credits
Eric for slide layout
Graham for initial problem discussion
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