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Raven’s Progressive 
Matrices

2
Barrett, David, et al. "Measuring abstract reasoning 
in neural networks." International Conference on 
Machine Learning. 2018.

▪ Test of visual intelligence

▪ Reason about perceptually obvious visual 
features

▪ Choose image which completes the matrix

▪ In cognitive science experiments: 

“RPMs are strongly diagnostic of abstract 
verbal, spatial and mathematical reasoning 
ability, discriminating even among 
populations of highly educated subjects”

Q.

A.



Solution
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Relation structure:

▪ Type of relation (R) : Progression

▪ Object of relation (O): Shape

▪ Attribute of relation (A): Number

i.e. the relation is a progression in the number of 
shapes (going down the rows of the matrix)

{[r,o,a]: r ∈ R, o ∈ O, a ∈ A}

Each matrix has 1-4 such relations

Q.

A.



Primitives for building abstract features
Relation Types (R): Progression, XOR, OR, AND, Consistent Union 

Generation process: 
(1) Sampling 1- 4 triples (r, o, a)
(2) Sampling values v ∈ V for each a ∈ Sa, adhering to the associated relation r
(3) Sampling values v ∈ V for each a ∉ Sa, ensuring no spurious relation is induced
(4) Rendering the symbolic form into pixels
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Object (O) Attributes (A) Possible values (v)
Shape Size 10 scaling factors evenly spaced in [0, 1]

Color 10 evenly spaced grayscale intensities in [0, 1]

Number 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Position ((x, y) coordinates in a (0, 1) plot)

Type circle, triangle, square, pentagon, hexagon, octagon, star

Line Type diagonal down, diagonal up, vertical, horizontal, diamond, circle

Color 10 evenly spaced grayscale intensities in [0, 1]



Relation types
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Categorisation of relation types:

● UNARY (only consider one panel for context)

e.g. PROGRESSION (P) on the NUMBER (A) of SHAPE (O)

● BINARY (two panels are considered in conjunction to produce third)

e.g. XOR (R) on the TYPE (A) of LINE (O)

● TERNARY (all three panels adhere to some rule - regardless of 
order)

e.g. CONSISTENT UNION (R) on TYPE (A) of SHAPE (O) i.e. all 
shapes from common set {circle, hexagon, square} in the example



A hard(er) RPM
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Possible relations:

1. OR (R) on POSITION (A) of SHAPES (O) in a row

2. OR (R) on TYPE (A) of LINE (O) in a column



RPM Generalisation regimes
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● Neutral

● Interpolation
● Extrapolation

● Held-out attribute (shape-color)
● Held-out attribute (line-type)

● Held-out triple {r,o,a}
● Held-out Pairs of Triples

● Held-out Attribute Pairs



Neutral
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All {r,o,a} triplets that are seen in training are seen in test
-> Difference is just in the pixel-level manifestation of the matrix



Interpolation/Extrapolation

9

For ordered attributes: 
● colour takes 10 evenly spaced grayscale values between [0,1]
● size takes 10 evenly spaced scaling factors between [0,1]
● number takes values 0,1,2,3,4,5,6,7,8,9

Interpolation Extrapolation

train numbers 0,2,4,6,8
test numbers 1,3,5,7,9
(similarly for other attributes)

train numbers 0,1,2,3,4
test numbers 5,6,7,8,9
(similarly for other attributes)



Held-out attribute 
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Training set S does not contain any triplet with 
● o = shape, a = colour (shape-colour)
● o = line, a = type (line-type)

At least one triplet with these held-out attributes is present in test 
set



Held-out triples/ pair of triples 
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29 unique triples {r,o,a} in dataset:
● 7 triples in test set (such that each ‘a’ occurs only once, every 

PGM in the test set has at least one of these triples)

400 viable pairs of triples ({r1,o1,a1},{r2,o2,a2}) = (t1,t2)
● 360 train, 40 test
● Any of the 40 (t1,t2) do not occur together in train PGM, test 

PGM has at least one pair out of 40



Held-out pair of attributes
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20 (unordered) unique attribute pairs (a1,a2) in dataset:
● Such that ({r1,o1,a1},{r2,o2,a2}) is a viable triplet pair
● 16 train, 4 test



RAVEN
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Zhang, C., Gao, F., Jia, B., Zhu, Y., & Zhu, S. C. (2019). Raven: 
A dataset for relational and analogical visual reasoning. 
CVPR 2019

RAVEN PGM

More structure + structured 
annotations

(generated using Attributed 
Stochastic Image Grammar)

Less structure

More rules per RPM Less rules 

7 figure configs 3 fig configs

Fewer* samples (*70k) 1.2M train set



RAVEN
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Generalisation regimes
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Regime Measure
Train: Center 
Test: Left-Right, Up-Down, and Out-InCenter

“compositional reasoning ability of the model as it requires the model to 
generalize the rules learned in a single-component configuration to 
configurations with multiple independent but similar components”

Train: Left-Right 
Test: Up-Down (and vice versa)

“...one could be regarded as a transpose of another. Thus, the test could 
measure whether the model simply memorizes the pattern in one 
configuration.”

Train: 2x2 Grid 
Test: 3x3 Grid (and vice versa)

“Both configurations involve multi-object interactions. Therefore, the test 
could measure the generalization when the number of objects changes”



Solution approaches



Wild Relation Network
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f,g are MLPs (constitute the relation network) - look at pairs of panel embeddings to 
extract relations - and then combine them across all pairs



Results (PGM) 
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Almost no better than random (12.5%) !!



Other observations (PGM) 
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● “worse generalisation in the case of Held-out Triples suggests that the 
model was less able to induce the meaning of unfamiliar triples from its 
knowledge of their constituent components”

● More relations in PGM - poorer performance 

● “the pressure to represent abstract semantic principles such that they can 
be decoded simply into discrete symbolic explanations seems to improve 
the ability of the model to productively compose its knowledge”

● “.....,for the relation property, the difference between a correct and incorrect 
meta-target prediction was substantial (86.8% vs. 32.1%). This result 
suggests that predicting the relation property correctly is most critical 
to task success” (for WReNs)



Dynamic Residual Tree
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Using the pre-order traversal of the A-SIG, a tree 
structure is built (each node represents Layout, 
Component, Structure, Scene etc)

Each node is a fully connected layer (instead of 
LSTM cell in Tree-LSTM) updated as :

w are word vector representations of the node 
label, Ic are input features from child node

The bottom level input I is just features from a 
CNN



DRT results (RAVEN)
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Generalisation Results (RAVEN) 
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Other observations (RAVEN) 
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● “WReN achieves higher accuracy on configurations consisting of multiple 
randomly distributed objects (2x2Grid and 3x3Grid), with drastically 
degrading performance in configurations consisting of independent 
image components. This suggests WReN is biased to grid-like 
configurations (majority of PGM) but not others that require compositional 
reasoning (as in RAVEN)”

● Both ResNet+DRT and WReN+DRT suffer performance loss on meta-target 
prediction and structured annotation prediction (exactly opposite to PGM 
observations!)



Multiplex Multilayer Graph Net (MXGNet)
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Wang, Duo, Mateja Jamnik, and Pietro Lio. "Abstract 
diagrammatic reasoning with multiplex graph networks." 
ICLR 2020.

● Fp, object-representation module: 
CNN: each location is treated as 
object feature vector in grid features

Spatial attention: Attend location of 
object -> extract using CNN;
for each location zpres indicates 
whether object present

● E_y, Edge embeddings module

● G_phi, Graph summarization 
module

● R_theta, Reasoning network



MXGNet: (shoddy) explanation
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Multiplex edge embeddings:

Fg returns object representations vij
i ⊂ [1,N] #frames (use only row/col)
j ⊂ [1,L] #objects (nodes in a layer)

P = Projection layer projecting 
concatentated node embeddings to T 
different embeddings

E = MLP processing tth projections to tth 
layer of edge embeddings

Graph summarization:

Concat the max(), min(), sum(), mean() of all 
edges from nodes in a particular layer to nodes 
in last layer (since relations are of the form:

Diagram 3 = F(Diagram 1, Diagram 2))



MXGNet: (shoddy) explanation
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Cross-multiplexing gating:

Takes aggregated node info from 
each layer -> outputs gating 
variable for each node in layer 
(implemented as multi-head MLP)

Finally, take node embeddings, 
multiply with gating function, pass 
through MLP = node embeddings

Take all node embeddings, 
concatenate, pass through 
ResBlock = Relation feature 
embedding for subset (e.g. row 
1/2/3)

Reasoning network: Takes relational embeddings 
and ranks all candidate answers using ResNet + 
softmax



MXGNet: results
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MXGNet: results
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Evaluation flaw in RAVEN

29Steven Spratley, Krista Ehinger, and Tim Miller. A Closer 
Look at Generalisation in RAVEN. ECCV 2020



Evaluation flaw in RAVEN

30Steven Spratley, Krista Ehinger, and Tim Miller. A Closer 
Look at Generalisation in RAVEN. ECCV 2020



Role of symbolic knowledge & relational 
bias
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Previous methods relied (heavily) on using meta targets as well as strong inductive biases for learning relations.

Are they necessarily needed?

Can we distengale the underlying objects (factors) and simply pass to neural network?



In PGMs
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Xander Steenbrugge, Sam Leroux, Tim Verbelen, and Bart Dhoedt. Improving generalization for abstract reasoning tasks 
using disentangled feature representations. Neural Information Processing Systems (NeurIPS) Workshop on Relational 
Representation Learning, 2018

Replaces CNN with VAE in the original WReN approach:

Showed some-level of object disentanglement in PGM scenes



Question:
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Answer: Yes

Extensive study of different VAE models 
with Relation network for visual 
reasoning tasks (not PGMs, another 
task where underlying factors were 
controlled). Conclusions:

1. “these results provide concrete 
motivation why one might want to 
pursue disentanglement as a property 
of learned representations in the 
unsupervised case.” 

2. “.. observed differences between 
disentanglement metrics, which should 
motivate further work in understanding 
what different properties they capture.”

3. “....useful to extend the methodology 
in this study to other complex 
down-stream tasks, or include an 
investigation of other purported benefits 
of disentangled representations”



Object/Frame Relational ResNet

34Steven Spratley, Krista Ehinger, and Tim Miller. A Closer 
Look at Generalisation in RAVEN. ECCV 2020

ResNet baseline: Stack frames into independent sequences (one frame per candidate), 
pass through 4-layer ResNet and then rank using FC layers and softmax. 
(*Different from original paper approach as all candidate frames were processed at once)

Frame-relational ResNet (Rel-Base): Two stage-
● Take all frames and embed them individually (using ResNet)
● Take frame embeddings, stack into candidate sequences (as above), and pass through 

1D convolution. This enables to learn low-level perceptual processes unaffected by 
position of frames, and high level that models relations in & between embeddings.



Rel-AIR: explanation
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● Scene decomposition: Uses attend-infer-repeat (a sort of iterative VAE which splits up 
the scene into object latents) to get object slots, scales and positions

● Object embedding: Encode objects through CNN
● Latent-informed object embedding: Combine object embedding with scale, position 

and pass the paired data through a bilinear layer to unify
● Object-relational feature extraction:Reshape the object-embedding into N object 

channels, pass through 1D residual encoder to generate frame embeddings

Finally, these object-relational feature embeddings are stacked into sequences, encoded 
and scored using fully-connected layers (same as Rel-Base)



Rel-Base and Rel-AIR: results
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Rel-Base and Rel-AIR: results
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Availability of object lists reduces problem 
complexity greatly



Open questions



Open questions: compositional generalization
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If a model has seen certain relation in {o1,a1} and never seen it in 
{o1,a2} how well is it able to generalise (i.e. compose the relation for 
unseen attribute of the same object)
● Similarly hold attribute constant and vary object
● Finally vary both

This can be seen as a better measure of understanding a relation 
across visual concepts. This can also evaluate ‘object-centric ness’ of 
object centric representations

● How does this relate to type of relation (unary/binary/ternary)?



Open questions: role of inductive 
biases 
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Two different directions of inductive biases:
● Object-centric representations (VAE, Rel-AIR)
● Relation learning (WReN, MXGNet)

How does generalization differ across both? 
● Do better object-centric representations lead to better generalization 

across object/attribute types?
● Does strong relation leaning bias reduce possibility of generalizing 

across unseen relation types?



Open questions: can we adopt methods from VQA?
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Can possibly use something similar for abstract 
reasoning:

        ‘Image context’

                                 ‘Question’



Open (closed?) questions: modular networks
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Modular networks are used in CLEVR (VQA task with compositional requirements) and 
other tasks:
● Hu, Ronghang, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Kate Saenko. "Learning to reason: 

End-to-end module networks for visual question answering." CVPR 2017
● Drew A Hudson and Christopher D Manning. “Compositional attention networks for machine reasoning”. 

ICLR, 2018
● Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths “Automatically composing 

representation transformations as a means for generalization” ICLR 2019

Also being used* for abstract visual reasoning (NeurIPS 2020 submissions on arxiv)
● Yuhuai Wu, Honghua Dong, Roger Grosse, Jimmy Ba. “The Scattering Compositional Learner: 

Discovering Objects, Attributes, Relationships in Analogical Reasoning”, arxiv 2020
● Xiangru Tang, Haoyuan Wang, Xiang Pan, Jiyang Qi, “Multi-Granularity Modularized Network for Abstract 

Visual Reasoning”, arxiv 2020

Does that mean we can use other ideas from VQA? * yet to review



Open questions: Program synthesis approach
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Program synthesis approaches have been used in 
CLEVR. Seeing how PGM and RAVEN are both 
procedurally generated problems, program 
induction/synthesis seems like an obvious approach to 
try.

Neural
● Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman, J., 

Fei-Fei, L., Lawrence Zitnick, C. and Girshick, R., “Inferring and 
executing programs for visual reasoning”. CVPR 2017.

Neural+Symbolic
● “The Neuro-Symbolic Concept Learner: 

Interpreting Scenes, Words, and 
Sentences From Natural Supervision” 
Jiayuan Mao, Chuang Gan, Pushmeet 
Kohli, Joshua B. Tenenbaum, and Jiajun 
Wu. ICLR 2019



Open questions: Scaling to reasoning on real images
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Teney, Damien, et al. "V-PROM: A Benchmark for 
Visual Reasoning Using Visual Progressive 
Matrices." AAAI. 2020.

VQA approaches can be especially helpful for 
real-world analogical reasoning problems…….



Thanks
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Credits
Eric for slide layout

Graham for initial problem discussion


