
Shashank Shekhar

An intro* to probabilistic
programming (using Pyro)
*For people who know deep learning

MLRG Talk, June 11, 2020

Shashank ShekharShashank Shekhar

Credits

Parts of slides/ideas adapted from:

● Maria Gorinova, University of Edinburgh, Probabilistic Programming: The What, Why
and How

● Shakir Mohamed, DeepMind, Probabilistic Reasoning & Variational Inference:
Foundations | Tricks | Algorithms

Code adapted/borrowed from: Pyro documentation

Thanks to Mike for reviewing the tutorial

http://homepages.inf.ed.ac.uk/s1207807/files/ppl_intro_slides.pdf
http://homepages.inf.ed.ac.uk/s1207807/files/ppl_intro_slides.pdf
https://github.com/mlss-2019/slides/tree/master/variational_inference
https://github.com/mlss-2019/slides/tree/master/variational_inference
http://pyro.ai/examples/index.html#

Shashank ShekharShashank Shekhar

Pre-requisites

● Introductory probability

● Introductory machine learning

● Python programming

● Some familiarity with Pytorch

Shashank ShekharShashank Shekhar

In this tutorial...

● Probabilistic Programming: Breaking
down the two components

● Bayesian Inference: Reframing the
architecture-loss f/w of learning into
the model-inference-algorithm f/w

● Sampling based inference*

● Variational Inference

● Deep learning case study: VAEs (time
permitting)

*I will add notebooks and post the complete slides with sampling
based methods on Slack. This tutorial will mention them only in
passing (for completeness) in the interest of time.

Shashank ShekharShashank Shekhar

Disclaimer (long)

Author is an electrical engineer by training and (to his chagrin) not a:

● Computer scientist: Never took a class on programming languages, compiler
design, automata theory, logic etc. (might not completely understand or explain the
ideas behind the actual implementation of these languages)

● Statistician: Took one class on statistics and attended one summer school on
bayesian machine learning (might not completely understand or explain the ideas
behind all the inference mechanisms used in these languages)

(Feel free to jump in if you find something fishy. I’ve also referred to resources for further viewing/reading at the end)

Shashank ShekharShashank Shekhar

Before we start

Please find the notebooks used in this tutorial as well as
the Google Colab notebook links here:

https://github.com/sshkhr/ppl_tutorial

https://github.com/sshkhr/ppl_tutorial

Shashank Shekhar

Probabilistic / Programming

Shashank ShekharShashank Shekhar

Let’s hear from the experts*….

*PhD dissertation: “Computability, inference and modeling
in probabilistic programming”

Shashank ShekharShashank Shekhar

This presentation/tutorial only covers part 1

Shashank ShekharShashank Shekhar

A program

Parameters

Program

Observations

Input

Output

Shashank ShekharShashank Shekhar

A probabilistic program

Parameters

Program

ObservationsInput
Inference

Output

Shashank ShekharShashank Shekhar

Probabilistic programming

“The key insight in PP is that statistical modeling can, when
you do it enough, start to feel a lot like programming. If we
make the leap and actually use a real language for our
modeling, many new tools become feasible. We can start to
automate the tasks that used to justify writing a paper for
each instance.”

Shashank ShekharShashank Shekhar

Why probabilistic programming?

● Quantify uncertainty
● Encode structure about the world through Bayesian modelling (later)
● Works well in low-data regime
● Separate modelling from inference <-- Bayesian Inference ++
● Utilize programming structures like control flow, modularity etc <-- Bayesian Inference ++

Deep learning libraries: High-level interface to actual implementation of the architectures at
low-level linear algebra operations or the learning mechanism via gradient propagation

Probabilistic programming: High-level interface to modelling and inference in a Bayesian
setting

Shashank ShekharShashank Shekhar

Probabilistic programming vs Deep Learning

F (x) = y

Conventional
Programming

Deep Learning (Differentiable
Programming?)

Probabilistic Programming

● Given: Input x,
Deterministic/
pseudo-random
function F

● Want: Output y

● Given: Input x, Output y
● Want: (Deterministic/

random) function F

● Given: Output y,
Random function F

● Want: Probability
distribution on input x

Shashank ShekharShashank Shekhar

A hands-on intro to Pyro

Please follow this Google Colab link

https://colab.research.google.com/drive/1MdNRUhWtRPDjB_2M0cPEzOL1AU
bEFVke?usp=sharing

File -> Save a copy in Drive = create your own copy to work with

https://colab.research.google.com/drive/1MdNRUhWtRPDjB_2M0cPEzOL1AUbEFVke?usp=sharing
https://colab.research.google.com/drive/1MdNRUhWtRPDjB_2M0cPEzOL1AUbEFVke?usp=sharing

Shashank Shekhar

Think Bayesian

Shashank ShekharShashank Shekhar

Bayes Rule

Posterior

PriorLikelihood

Evidence

Shashank ShekharShashank Shekhar

Bayesian inference

Given i.i.d data X = (X1, …, Xn) from distribution p(X|Θ) encode uncertainty about Θ in a prior p(Θ) and apply
Bayesian inference:

Shashank ShekharShashank Shekhar

Full Bayesian inference

Training stage:

Testing stage:

Shashank ShekharShashank Shekhar

Full Bayesian inference <- HARD

Training stage:

 These integrals can be intractable

Testing stage:

Shashank ShekharShashank Shekhar

Full Bayesian inference <- HARD

Training stage:

 These integrals can be intractable
 We shall see how to deal with them in the next sections
Testing stage:

Shashank ShekharShashank Shekhar

Moving from DL to Bayesian Inference

In deep learning we think of our model as the network
architecture. We frame a loss function which on
minimization gives a point estimate (usually maximum
likelihood or penalized maximum likelihood) of the model
parameters (network weights).

Shashank ShekharShashank Shekhar

Architecture - Loss f/w: Linear Regression

Architecture: y = wTx + b

Loss: Least squares loss (+ regularization)

Optimization: Normal equations (analytical) / Gradient descent

Shashank ShekharShashank Shekhar

Architecture - Loss f/w: Deep Learning

Architecture: E[y] = hL*hL-1......*hl*h0(x)

Loss: Least squares loss (+ regularization)

Optimization: Stochastic gradient descent

Shashank ShekharShashank Shekhar

Least squares regression = MLE

Linear regression model ->

Likelihood for i.i.d data ->

Shashank ShekharShashank Shekhar

Least squares regression = MLE (contd)

Log likelihood ->

MLE estimate ->

 <- Least squares estimate

Shashank ShekharShashank Shekhar

MLE ⊆ Inference

MLE = One of multiple ways to make statistical inferences

Probabilistic inference mechanisms:
- Provide a natural idea of uncertainty (sample far from the mean)
- Enable generative modelling

Bayesian inference mechanisms: provide knowledge about structure of
data to model in the form of priors

Shashank ShekharShashank Shekhar

Models

CNN = Bayes Net=
Directed & Fully-observed
Parametric

Gaussian Process =
Non-parametric VAE and GAN =

Latent Variable models

Shashank ShekharShashank Shekhar

Inference

Shashank ShekharShashank Shekhar

Model + Inference + Algorithm

Shashank ShekharShashank Shekhar

Bayesian Inference using Pyro

Please follow this Google Colab link

https://colab.research.google.com/drive/1m690LL-xpS1i9CNlYPY6y7SJO00SL
v0J?usp=sharing

File -> Save a copy in Drive = create your own copy to work with

https://colab.research.google.com/drive/1m690LL-xpS1i9CNlYPY6y7SJO00SLv0J?usp=sharing
https://colab.research.google.com/drive/1m690LL-xpS1i9CNlYPY6y7SJO00SLv0J?usp=sharing

Shashank Shekhar

Sampling based Inference

Shashank Shekhar

Bayesian Inference = Integration

Shashank Shekhar

Bayesian Inference = Integration <- Hard

Shashank Shekhar

Bayesian Inference = Integration <- Hard

Summation <- Easy

(Approximate by)

Shashank ShekharShashank Shekhar

Importance Sampling

Integral problem ->

Introduce new distribution ->

Re-weight/re-group ->

Transformed Integral (after importance sampling) ->

Shashank ShekharShashank Shekhar

MCMC

Without going into much details:

Monte-Carlo method replaces an integral with a summation

A Markov Chain is a sequence of random variables {Xi} where the random variable at next step Xt+1
depends only on the last random variable Xt (first-order Markov chain) or a few of the last r.v.

In Bayesian Inference the random variables we are interested in are the model parameters.

The Ergodic theorem says that for and irreducible, aperiodic, positive recurrent Markov chain with
stationary distribution, π(x):

Shashank ShekharShashank Shekhar

MCMC (contd)

So putting these two together:

- We can use Monte Carlo estimates to replace an integral with a summation
- We can use Markov chains to obtain estimate of any function of a r.v. X and since many

integrals we are interested in are expectations they can obtained using a Markov chain.

Thus, MCMC can be used to sample for random variables and then these samples can be summed
to approximate expectations over distributions

Common MCMC methods: Metropolis Hastings, Random Walk Metropolis Hastings, Gibbs
Sampling, Hamiltonian Monte Carlo, No U-Turn Sampling

Shashank Shekhar

Variational Inference

Shashank Shekhar

Bayesian Inference = Integration

Shashank Shekhar

Bayesian Inference = Integration <- Hard

Shashank Shekhar

Bayesian Inference = Integration <- Hard

Optimization <- Easy(ish)

(Approximate/replace by)

Shashank ShekharShashank Shekhar

VI vs MCMC

Probabilistic model

Variational Inference MCMC

Approximate Sample from unnormalized

- Biased - Unbiased
- Faster and scalable - Needs lots of samples
- No theoretical guarantees - Theoretical guarantee of

convergence

Shashank ShekharShashank Shekhar

VI vs MCMC

Shashank ShekharShashank Shekhar

Importance Sampling (again)

Integral problem ->

Introduce new distribution ->

Re-weight/re-group ->

Transformed Integral (after importance sampling) ->

<- The marginalized
likelihood p(x|Θ) is what we
would like to find after
getting rid of the latent
variables

Shashank ShekharShashank Shekhar

IS to Variational Inference

Importance weight ->

Using Jensen’s inequality ->

VARIATIONAL LOWER BOUND/ ->
(EVIDENCE LOWER BOUND) ELBO

(Reconstruction term)
Given z we can generate x:

How good is z at generating x?
(averaged over q)

Kullback-Liebler divergence
(Penalty/Regularizer term)
How different is q(z) to the original prior
p(z): don’t wanna steer too far

Approximate posterior

Shashank ShekharShashank Shekhar

Integral problem -> Optimization problem

Shashank ShekharShashank Shekhar

Why Variational Inference?

Disadvantages Advantages

- Approximate posterior ONLY: not
guaranteed to find exact in limit

- Difficult to optimize - can get stuck in local
optima

- Underestimates variance of posterior and
can bias MLE

- Limited theory/guarantees

- Applicable to almost all types of models
- Integration -> Optimization
- Easy convergence assessment (check if

ELBO stops increasing)
- Principled and scalable approach for model

selection
- Faster to converge + Numerically stable
- Can use modern architectures (GPUs)

Shashank ShekharShashank Shekhar

Choosing q

Shashank ShekharShashank Shekhar

Variational Optimisation

● Variational EM

● Stochastic Variational Inference

● Doubly Stochastic Variational Inference

● Amortized Inference

Shashank ShekharShashank Shekhar

EM -> Variational EM

The E-M Algorithm Variational E-M

E-Step: Compute model evidence (expectation over latent
variables)

M-Step: Calculate gradients of model parameters from
evidence and perform gradient step

E-Step: Calculate the gradient wrt variational parameters
(instead of calculating the integral we are optimizing the
ELBO)

M-Step: Calculate the gradient wrt model parameters

Shashank ShekharShashank Shekhar

Stochastic Inference

Switch* the order of integration-differentiation in the E-M algorithm

Shashank ShekharShashank Shekhar

Stochastic Optimization

Doubly stochastic estimators:

Pathwise Estimators
When f is differentiable and easy to use
transformation available

Score-function estimator
When f is non-differentiable (e.g. discrete latent
variable) and q(z) easy to sample from

Shashank ShekharShashank Shekhar

Variational Inference using Pyro

Please follow this Google Colab link

https://drive.google.com/file/d/1mr2U1EMov7l7GFJVcdFWdNDYf41odROJ/vie
w?usp=sharing

File -> Save a copy in Drive = create your own copy to work with

https://drive.google.com/file/d/1mr2U1EMov7l7GFJVcdFWdNDYf41odROJ/view?usp=sharing
https://drive.google.com/file/d/1mr2U1EMov7l7GFJVcdFWdNDYf41odROJ/view?usp=sharing

Shashank Shekhar

Deep Learning case study:
Variational Autoencoders

Shashank ShekharShashank Shekhar

Amortized Inference

How E-step will work?

- For each observation: calculate gradients of variational parameters -> optimize the
 Variational parameters for each observation

Instead of repeatedly calculating the variational gradients for every observation:
We can amortise using a model

Shashank ShekharShashank Shekhar

Amortized Inference (contd)

Inference network/Encoder/Inverse model: Parameters of q are now a set of
 global parameters

Both model and variational parameters are now global variables
-> can be optimized jointly

Shashank ShekharShashank Shekhar

Variational Autoencoder

Already seen!

Variational Autoencoder is the combination of:

● Model: Latent-Variable model
● Inference: Variational Inference
● Algorithm: Inference networks +

Stochastic encoder-decoder

Shashank ShekharShashank Shekhar

The latent variable model

- N data points {xi}

- Each datapoint generated by local latent r.v. zi

- θ is a parameter (global since all data points
depend on it)

- Each xi depends on zi in a complex, non-linear
way - parameterized by a neural network θ

The model

Shashank ShekharShashank Shekhar

The inference network

- Classic VI: Have variational parameters {λi}
for each datapoint xi

- Amortized VI: Instead of variational
parameters {λi}, learn a function that maps
each xi to an appropriate λi. .Since we want
this mapping to be flexible -> use a neural net

The guide

Shashank ShekharShashank Shekhar

Variational AutoEncoders using Pyro

Please follow this Google Colab link

https://drive.google.com/file/d/1ZqngmNb5bT1TSMjBwH6U1ImE0-aKj7KL/vie
w?usp=sharing

File -> Save a copy in Drive = create your own copy to work with

https://drive.google.com/file/d/1ZqngmNb5bT1TSMjBwH6U1ImE0-aKj7KL/view?usp=sharing
https://drive.google.com/file/d/1ZqngmNb5bT1TSMjBwH6U1ImE0-aKj7KL/view?usp=sharing

Shashank ShekharShashank Shekhar

Final note on PPLs

Bayesian inference is the most-widely used application of PPLs but they are not
limited to it. Many (including Pyro) provide methods for causal inference. A lot
of them provide modules for applications like forecasting etc.

Outside of statistics and AI, several applications of these languages are in
cognitive science and physics.

Ideas from programming languages like effect handling, static analysis,
termination checking, program synthesis etc are being ported to PPLs as well.

Shashank ShekharShashank Shekhar

Resources: PPLs

Courses:

- Frank Wood, UBC, Probabilistic Programming (more about applications)
- Noah Goodman, Stanford, The Design and Implementation of Probabilistic Programming Languages (more

about the development of the languages itself)

PPLs:

1. Pyro
2. WebPPL
3. Edward (now Tensorflow Probability)
4. Stan (in multiple languages R/Julia/Python)
5. PyMC

https://www.cs.ubc.ca/~fwood/CS532W-539W/
http://dippl.org/
http://www.pyro.ai/
http://webppl.org/
http://edwardlib.org/
https://www.tensorflow.org/probability
http://mc-stan.org/
https://docs.pymc.io/

Shashank ShekharShashank Shekhar

Resources: PPLs

Talks (introductory):

1. Dustin Tran: "What might deep learners learn from probabilistic programming?"
2. Stuart Russell: "Probabilistic programming and AI"
3. "An Overview of Probabilistic Programming" by Vikash K. Mansinghka

Talks (research):

The inaugural International Conference on Probabilistic Programming (PROBPROG) held in 2018
has made its talks available on its youtube channel

https://www.youtube.com/watch?v=30FDdK2734I
https://www.youtube.com/watch?v=JzBrp5LnNCo&t=1300s
https://www.youtube.com/watch?v=-8QMqSWU76Q
https://www.youtube.com/channel/UCTFDb7aQY1ewBYwJJrpKp6Q

Shashank Shekhar

Thank You!

