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Credits

Parts of slides/ideas adapted from:

● Maria Gorinova, University of Edinburgh, Probabilistic Programming: The What, Why 
and How

● Shakir Mohamed, DeepMind, Probabilistic Reasoning & Variational Inference: 
Foundations | Tricks | Algorithms

Code adapted/borrowed from: Pyro documentation

Thanks to Mike for reviewing the tutorial

http://homepages.inf.ed.ac.uk/s1207807/files/ppl_intro_slides.pdf
http://homepages.inf.ed.ac.uk/s1207807/files/ppl_intro_slides.pdf
https://github.com/mlss-2019/slides/tree/master/variational_inference
https://github.com/mlss-2019/slides/tree/master/variational_inference
http://pyro.ai/examples/index.html#
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Pre-requisites

● Introductory probability

● Introductory machine learning 

● Python programming

● Some familiarity with Pytorch
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In this tutorial...

● Probabilistic Programming: Breaking 
down the two components

● Bayesian Inference: Reframing the 
architecture-loss f/w of learning into 
the model-inference-algorithm f/w

● Sampling based inference*

● Variational Inference

● Deep learning case study: VAEs (time 
permitting)

*I will add notebooks and post the complete slides with sampling 
based methods on Slack. This tutorial will mention them only in 
passing (for completeness) in the interest of time.
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Disclaimer (long)

Author is an electrical engineer by training and (to his chagrin) not a:

● Computer scientist: Never took a class on programming languages, compiler 
design, automata theory, logic etc. (might not completely understand or explain the 
ideas behind the actual implementation of these languages)

● Statistician: Took one class on statistics and attended one summer school on 
bayesian machine learning (might not completely understand or explain the ideas 
behind all the inference mechanisms used in these languages)

(Feel free to jump in if you find something fishy. I’ve also referred to resources for further viewing/reading at the end)
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Before we start

Please find the notebooks used in this tutorial as well as 
the Google Colab notebook links here:

https://github.com/sshkhr/ppl_tutorial

https://github.com/sshkhr/ppl_tutorial
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Probabilistic / Programming



Shashank ShekharShashank Shekhar

Let’s hear from the experts*….

*PhD dissertation: “Computability, inference and modeling 
in probabilistic programming”
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This presentation/tutorial only covers part 1



Shashank ShekharShashank Shekhar

A program

Parameters

Program

Observations

Input

Output
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A probabilistic program

Parameters

Program

ObservationsInput
Inference

Output
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Probabilistic programming

“The key insight in PP is that statistical modeling can, when 
you do it enough, start to feel a lot like programming. If we 
make the leap and actually use a real language for our 
modeling, many new tools become feasible. We can start to 
automate the tasks that used to justify writing a paper for 
each instance.”
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Why probabilistic programming?

● Quantify uncertainty
● Encode structure about the world through Bayesian modelling (later)
● Works well in low-data regime
● Separate modelling from inference <-- Bayesian Inference ++
● Utilize programming structures like control flow, modularity etc <-- Bayesian Inference ++

Deep learning libraries: High-level interface to actual implementation of the architectures at 
low-level linear algebra operations or the learning mechanism via gradient propagation

Probabilistic programming: High-level interface to modelling and inference in a Bayesian 
setting
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Probabilistic programming vs Deep Learning

F ( x ) = y

Conventional
Programming

Deep Learning (Differentiable 
Programming?)

Probabilistic Programming

● Given: Input x, 
Deterministic/ 
pseudo-random 
function F

● Want: Output y 

● Given: Input x, Output y 
● Want: (Deterministic/ 

random) function F

● Given: Output y, 
Random function F

● Want: Probability 
distribution on input x
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A hands-on intro to Pyro

Please follow this Google Colab link  

https://colab.research.google.com/drive/1MdNRUhWtRPDjB_2M0cPEzOL1AU
bEFVke?usp=sharing

File -> Save a copy in Drive = create your own copy to work with

https://colab.research.google.com/drive/1MdNRUhWtRPDjB_2M0cPEzOL1AUbEFVke?usp=sharing
https://colab.research.google.com/drive/1MdNRUhWtRPDjB_2M0cPEzOL1AUbEFVke?usp=sharing
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Think Bayesian
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Bayes Rule

Posterior

PriorLikelihood

Evidence
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Bayesian inference

Given i.i.d data X = (X1, …, Xn) from distribution p(X|Θ) encode uncertainty about Θ in a prior p(Θ) and apply 
Bayesian inference:
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Full Bayesian inference

Training stage:

Testing stage:
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Full Bayesian inference <- HARD

Training stage:

   These integrals can be intractable

Testing stage:
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Full Bayesian inference <- HARD

Training stage:

   These integrals can be intractable
                                                                                       We shall see how to deal with them in the next sections
Testing stage:
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Moving from DL to Bayesian Inference

In deep learning we think of our model as the network 
architecture. We frame a loss function which on 
minimization gives a point estimate (usually maximum 
likelihood or penalized maximum likelihood) of the model 
parameters (network weights).
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Architecture - Loss f/w: Linear Regression

Architecture: y = wTx + b

Loss: Least squares loss (+ regularization)

Optimization: Normal equations (analytical) / Gradient descent
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Architecture - Loss f/w: Deep Learning

Architecture: E[y] = hL*hL-1......*hl*h0(x)

Loss: Least squares loss (+ regularization)

Optimization: Stochastic gradient descent
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Least squares regression = MLE

Linear regression model ->

Likelihood for i.i.d data -> 
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Least squares regression = MLE (contd)

Log likelihood ->

MLE estimate -> 

 
     <- Least squares estimate
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MLE ⊆ Inference 

MLE = One of multiple ways to make statistical inferences

Probabilistic inference mechanisms: 
- Provide a natural idea of uncertainty (sample far from the mean) 
- Enable generative modelling

Bayesian inference mechanisms: provide knowledge about structure of 
data to model in the form of priors
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Models

CNN = Bayes Net=
Directed & Fully-observed 
Parametric

Gaussian Process = 
Non-parametric VAE and GAN = 

Latent Variable models
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Inference
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Model + Inference + Algorithm
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Bayesian Inference using Pyro

Please follow this Google Colab link  

https://colab.research.google.com/drive/1m690LL-xpS1i9CNlYPY6y7SJO00SL
v0J?usp=sharing 

File -> Save a copy in Drive = create your own copy to work with

https://colab.research.google.com/drive/1m690LL-xpS1i9CNlYPY6y7SJO00SLv0J?usp=sharing
https://colab.research.google.com/drive/1m690LL-xpS1i9CNlYPY6y7SJO00SLv0J?usp=sharing
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Sampling based Inference
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Bayesian Inference = Integration
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Bayesian Inference = Integration <- Hard 
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Bayesian Inference = Integration <- Hard 

Summation <- Easy 

(Approximate by)
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Importance Sampling

Integral problem ->

Introduce new distribution  ->

Re-weight/re-group ->

Transformed Integral (after importance  sampling) ->
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MCMC

Without going into much details:

Monte-Carlo method replaces an integral                                           with a summation 

A Markov Chain is a sequence of random variables {Xi} where the random variable at next step Xt+1 
depends only on the last random variable Xt (first-order Markov chain) or a few of the last r.v.

In Bayesian Inference the random variables we are interested in are the model parameters.

The Ergodic theorem says that for and irreducible, aperiodic, positive recurrent Markov chain with 
stationary distribution, π(x):
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MCMC (contd)

So putting these two together:

- We can use Monte Carlo estimates to replace an integral with a summation
- We can use Markov chains to obtain estimate of any function of a r.v. X and since many 

integrals we are interested in are expectations they can obtained using a Markov chain.

Thus, MCMC can be used to sample for random variables and then these samples can be summed 
to approximate expectations over distributions

Common MCMC methods: Metropolis Hastings, Random Walk Metropolis Hastings, Gibbs 
Sampling, Hamiltonian Monte Carlo, No U-Turn Sampling 
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Variational Inference
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Bayesian Inference = Integration
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Bayesian Inference = Integration <- Hard 
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Bayesian Inference = Integration <- Hard 

Optimization <- Easy(ish) 

(Approximate/replace by)
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VI vs MCMC

Probabilistic model

Variational Inference MCMC

Approximate                                                             Sample from unnormalized 

- Biased - Unbiased
- Faster and scalable - Needs lots of samples
- No theoretical guarantees - Theoretical guarantee of

convergence 
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VI vs MCMC
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Importance Sampling (again)

Integral problem ->

Introduce new distribution  ->

Re-weight/re-group ->

Transformed Integral (after importance  sampling) ->

<- The marginalized 
likelihood p(x|Θ) is what we 
would like to find after 
getting rid of the latent 
variables 
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IS to Variational Inference

Importance weight ->

Using Jensen’s inequality ->

VARIATIONAL LOWER BOUND/ ->
(EVIDENCE LOWER BOUND) ELBO

(Reconstruction term) 
Given z we can generate x: 

How good is z at generating x?
(averaged over q) 

Kullback-Liebler divergence
(Penalty/Regularizer term) 
How different is q(z) to the original prior 
p(z): don’t wanna steer too far

Approximate posterior
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Integral problem -> Optimization problem
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Why Variational Inference?

Disadvantages Advantages

- Approximate posterior ONLY: not 
guaranteed to find exact in limit

- Difficult to optimize - can get stuck in local 
optima

- Underestimates variance of posterior and 
can bias MLE

- Limited theory/guarantees

- Applicable to almost all types of models
- Integration -> Optimization
- Easy convergence assessment (check if 

ELBO stops increasing)
- Principled and scalable approach for model 

selection
- Faster to converge + Numerically stable
- Can use modern architectures (GPUs)
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Choosing q
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Variational Optimisation

● Variational EM

● Stochastic Variational Inference

● Doubly Stochastic Variational Inference

● Amortized Inference
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EM -> Variational EM

The E-M Algorithm Variational E-M

E-Step: Compute model evidence (expectation over latent 
variables)

M-Step: Calculate gradients of model parameters from 
evidence and perform gradient step

   
E-Step: Calculate the gradient wrt variational parameters 
(instead of calculating the integral we are optimizing the 
ELBO)
   
M-Step: Calculate the gradient wrt model parameters
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Stochastic Inference

Switch* the order of integration-differentiation in the E-M algorithm
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Stochastic Optimization

Doubly stochastic estimators:

Pathwise Estimators
When f is differentiable and easy to use 
transformation available

Score-function estimator
When f is non-differentiable (e.g. discrete latent 
variable) and q(z) easy to sample from
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Variational Inference using Pyro

Please follow this Google Colab link  

https://drive.google.com/file/d/1mr2U1EMov7l7GFJVcdFWdNDYf41odROJ/vie
w?usp=sharing

File -> Save a copy in Drive = create your own copy to work with

https://drive.google.com/file/d/1mr2U1EMov7l7GFJVcdFWdNDYf41odROJ/view?usp=sharing
https://drive.google.com/file/d/1mr2U1EMov7l7GFJVcdFWdNDYf41odROJ/view?usp=sharing
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Deep Learning case study: 
Variational Autoencoders
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Amortized Inference 

How E-step will work?

- For each observation: calculate gradients of variational parameters -> optimize the
                                          Variational parameters for each observation

Instead of repeatedly calculating the variational gradients for every observation: 
We can amortise using a model
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Amortized Inference (contd)

Inference network/Encoder/Inverse model: Parameters of q are now a set of 
      global parameters

Both model and variational parameters are now global variables 
-> can be optimized jointly
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Variational Autoencoder

Already seen!

Variational Autoencoder is the combination of:

● Model: Latent-Variable model
● Inference: Variational Inference
● Algorithm: Inference networks + 

Stochastic encoder-decoder
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The latent variable model

- N data points {xi}

- Each datapoint generated by local latent r.v. zi

- θ is a parameter (global since all data points 
depend on it)

- Each xi depends on zi in a complex, non-linear 
way - parameterized by a neural network θ  

The model
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The inference network

- Classic VI: Have variational parameters {λi} 
for each datapoint xi

- Amortized VI: Instead of variational 
parameters {λi}, learn a function that maps 
each xi to an appropriate λi. .Since we want 
this mapping to be flexible -> use a neural net

The guide
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Variational AutoEncoders using Pyro

Please follow this Google Colab link  

https://drive.google.com/file/d/1ZqngmNb5bT1TSMjBwH6U1ImE0-aKj7KL/vie
w?usp=sharing 

File -> Save a copy in Drive = create your own copy to work with

https://drive.google.com/file/d/1ZqngmNb5bT1TSMjBwH6U1ImE0-aKj7KL/view?usp=sharing
https://drive.google.com/file/d/1ZqngmNb5bT1TSMjBwH6U1ImE0-aKj7KL/view?usp=sharing
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Final note on PPLs

Bayesian inference is the most-widely used application of PPLs but they are not 
limited to it. Many (including Pyro) provide methods for causal inference. A lot 
of them provide modules for applications like forecasting etc.  

Outside of statistics and AI, several applications of these languages are in 
cognitive science and physics. 

Ideas from programming languages like effect handling, static analysis, 
termination checking, program synthesis etc are being ported to PPLs as well. 
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Resources: PPLs

Courses:

- Frank Wood, UBC, Probabilistic Programming (more about applications)
- Noah Goodman, Stanford, The Design and Implementation of Probabilistic Programming Languages (more 

about the development of the languages itself)

PPLs:

1. Pyro
2. WebPPL
3. Edward (now Tensorflow Probability)
4. Stan (in multiple languages R/Julia/Python)
5. PyMC

https://www.cs.ubc.ca/~fwood/CS532W-539W/
http://dippl.org/
http://www.pyro.ai/
http://webppl.org/
http://edwardlib.org/
https://www.tensorflow.org/probability
http://mc-stan.org/
https://docs.pymc.io/
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Resources: PPLs

Talks (introductory):

1. Dustin Tran: "What might deep learners learn from probabilistic programming?"
2. Stuart Russell: "Probabilistic programming and AI"
3. "An Overview of Probabilistic Programming" by Vikash K. Mansinghka

Talks (research):

The inaugural International Conference on Probabilistic Programming (PROBPROG) held in 2018 
has made its talks available on its youtube channel

https://www.youtube.com/watch?v=30FDdK2734I
https://www.youtube.com/watch?v=JzBrp5LnNCo&t=1300s
https://www.youtube.com/watch?v=-8QMqSWU76Q
https://www.youtube.com/channel/UCTFDb7aQY1ewBYwJJrpKp6Q
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Thank You!


